Read our article Eukaryotes and Prokaryotes to find out more about these two types of organisms!
What is the importance of culturing microorganisms and what are they used for?
Essentially, by cultivating and studying microorganisms we can learn more about them. In medicine, we can identify what microorganisms are causing an infection in a sick patient by isolating and culturing any microorganism present in a patient sample. Bacteria culture tests are often used for this purpose to help find harmful bacteria in the body and diagnose bacterial infections. In fact, bacteria are the most common microorganism cultured in a lab. Patient samples can be taken for example of blood, urine, stool, mucus, skin or even spinal fluid for microorganism culturing and investigation. This allows doctors to identify the microorganism (i.e. the bacteria) and decide the best way to treat the infection. When culturing bacteria we can test their antibiotic susceptibility and treat infections based on this information.
We can use bacterial cultures to measure the effectiveness of antibiotics, antiseptics or disinfectants by calculating the size of the zone of inhibition around the substance being tested. The zone of inhibition is the area that is not colonised by bacteria due to the presence of antibiotics. To calculate this area, you can simply use the equation πr2. (area of the circle where r is its radius)
Read our article Uses of Antibiotics to find out more about these drugs and how they can be used to treat bacterial infections!
Besides infection diagnosis, culturing microorganisms is also important for example for research purposes that involve genetic manipulation of the microorganism, for epidemiological studies or to develop vaccines and other therapeutics.
Culturing microorganisms is essential to detect any possible food contaminants. Harmful bacteria like Salmonella and Campylobacter can contaminate our food and be responsible for food poisoning. Food microbiology plays an important role in public health.
Lastly, culturing microorganisms has several important applications in biotechnology. Microbial biotechnology plays an important role in the health, agriculture, chemical, energy, environment and food and beverage industries.
Bacteria and yeast (fungi) cultures are very important in the production of many foods and beverages.
Culturing yeast is important in the making of products like beer, bread and wine while culturing bacteria is used in the making of cheese and yoghurt. These microorganisms are used by these industries because of their ability to perform fermentation. In this process, some yeast and bacteria convert sugars into relevant byproducts (ethanol, lactic acid) that confer the characteristic texture and flavour of these products and improve their preservation.
Figure 1 . Wine fermentation.
Broadly, microorganisms have several characteristics that explain why they have so many uses. These include
High adaptability
Fast growth
Easy to culture
Cultures of microorganisms
Culturing involves multiplying microorganisms in a controlled way and under laboratory conditions. In order for culturing to work, scientists must be able to mimic the environmental conditions needed for these microorganisms to not only survive but also grow in a lab setting. Everything the microorganism needs must be provided and controlled to optimized standards. Conditions that must be controlled for successful microbial cultures include:
Temperature
pH
Sterility
Nutrients
In microbiology, sterility refers to the absence of contaminating viable microorganisms.
The growth of each type of microorganisms can be optimised by providing the best possible range in each of these conditions. This ensures our microbial culture is able to thrive. We can provide nutrients to the microorganism by using a culture medium. This medium can be in either liquid or solid (gel) form. It provides the surface for the microorganisms to grow on and contains all the essential nutrients. These usually include minerals, a nitrogen source (for protein production) and carbohydrates (energy source) and other chemicals that the microorganisms would usually find in nature.
Microorganisms usually also require warmth and oxygen to be able to grow, but not all have the same temperature requirements and some may even be able to grow in the absence of oxygen! pH is also important as it affects the structure of macromolecules so it must be kept to the microorganisms' preferable range.