Some genetic traits don’t follow Mendel’s laws of inheritance. A trait is sometimes controlled by more than 1 gene. Eye color is an example of this, as it is controlled by over 8 genes. Here, we will discuss epistasis, or how some genes control the expression of other genes.
Epistasis Definition
There are cases when a gene may oppose the expression of another gene, or sometimes a gene may not be expressed without another. This is how the genes in our bodies interact with one another to express a trait. We call this epistasis.
Epistasis is a polygenic interaction at different loci, where one gene controls the expression of the other gene for a given phenotype. Both genes are required for the trait to be expressed. However, one trait is epistatic to the other, meaning, it will control if it will get expressed or not.
The word “epistasis” has Greek roots that essentially mean “standing upon.” The gene that is masked by the epistatic gene is called hypostatic. It was earlier thought that genes used to work independently, but now, it is well known that almost all genes interact epistatically.
These gene interactions are why there are continuous variations in the characteristics of plants and animals because there are multiple genes involved for each trait expressed.
Epistatic gene
The epistatic gene is the gene that determines whether a particular trait will be expressed. A common way to understand is by taking the example of the albinism gene in humans.
Albinism is a condition where the body doesn't produce a pigment, melanin. Melanin is responsible for skin, hair, and eye pigmentation. Melanin concentration depends on genes and the exposure your ancestors had to the sun. So, people with more melanin have darker skin, while people with less melanin have lighter skin. A person with albinism will still have the skin color gene, however, the gene will not be expressed as the albinism gene is epistatic to the skin color gene. The albinism gene masks the expression of the skin color gene. As a result, the person will have extremely pale skin, eyes, and hair.
Before discussing how epistasis works and the ways it can be expressed, it is important for you to know what dominant and recessive alleles are.
Dominant alleles get expressed even if there is only one copy of the allele, whereas, recessive alleles need two copies to get expressed. This way, epistasis can either be dominant or recessive.
Is epistasis the same as dominance?
Epistasis is the relationship between alleles of two different genes. This means that the alleles at one locus can either be dominant or even recessive to the alleles at the second locus. Dominance, on the other hand, defines the relationship between two different alleles on the same gene. If one allele on a gene is dominant to the other, the recessive allele will not be expressed unless the gene is homozygous recessive.
Dominant Epistasis
Dominant epistasis occurs when a dominant allele results in a gene interfering in the expression of another gene. As discussed above, albinism is an example of dominant epistasis. To get a deeper understanding of this, let's discuss another example.
Dominant Epistasis Example
Have you ever eaten a squash? This fruit comes in many colors, white, yellow, and sometimes green. There are a lot of genes that control the color of a squash. This genetic inheritance is called polygenic inheritance.
When multiple genes affect a trait, it is called polygenic inheritance. It is a quantitative inheritance where more than 2 independent genes have an additive effect on a trait. Skin pigmentation in humans is an example of polygenic inheritance. We find people with different skin tones because there is continuous variation that involve several hundred genes controlling one trait. Since polygenic inheritance is complex, it can be quite difficult to predict the phenotype.
Squash color is also a heterozygous trait, meaning, it has two different alleles. Let’s consider yellow color (G) to be dominant over green color (g). Another gene at a second locus has a White color gene (W) and is considered dominant over no change (w). The gene at the second locus controls the expression of the gene at the first locus. This is dominant epistasis and the dominant allele (W) at the second locus is epistatic to alleles at the first locus (G/g)
In this case, the dominant allele at the second locus can mask the expression of the gene at the first locus, even if the alleles are dominant. A dihybrid cross between WwGg and WwGg shows the following results (Table 1).
| WG | Wg | wG | wg |
WG | WWGG[W] | WWGg[W] | WwGG[W] | WwGg[W] |
Wg | WWGg[W] | WWgg[W] | WwGg[W] | Wwgg[W] |
wG | WwGG[W] | WwGg[W] | wwGG[Y] | wwGg[Y] |
wg | WwGg[W] | Wwgg[W] | wwGg[Y] | wwgg[G] |
Table 1. Shows the dihybrid cross between two squash plants with genotype WwGg. Y = Yellow, W = White, G = Green. (12/16) squash plants are white, (3/16) are yellow, and (1/16) are green. StudySmarter Original
Dominant epistasis phenotypic ratio
You can deduce from the above table that the phenotypic ratio in the case of dominant epistasis is 12:3:1. This is because when the dominant allele (W) at the second locus is expressed, it inhibits the expression of the alleles (G or g) even when the allele at the first locus is dominant. The only time the gene at the first locus will be expressed is when the genotype at the second locus is homozygous recessive (ww).
Therefore, from the above table, you can see that there would be 9 white, 3 yellow, and one green squash. This is how dominant epistasis works. Now you know why there are so many colors of squash growing in a field! You should note that this type of gene interaction is also observed in cases of the color coat of barley and skin color in mice.
Recessive Epistasis
Recessive epistasis, on the other hand, occurs when a pair of homozygous recessive alleles at one locus mask the expression of alleles at another locus. To understand how this works, let’s take the example of Labradors!
Recessive Epistasis Example
Who doesn’t love Labradors? Labradors are a breed of dogs that have different fur coat colors, black, brown, or sometimes yellow. These coat color variations are a result of recessive epistasis.
Figure 1. Recessive epistasis affects the fur coat of Labradors and as a result, the Labrador may have black, brown, or white fur Credit: Jeremy Seto
Let’s consider Labradors with black fur dominant to Labradors with brown fur. Let’s assign B allele to black fur and b allele to brown fur. A Labrador with black fur has BB/Bb genotype and a Labrador with brown fur has bb genotype.
There is another gene at the second locus which decides whether this pigment will be delivered in the fur. E denotes the dominant allele, and the recessive allele is denoted by e. If the gene at this locus is homozygous recessive (ee), then the pigment will not be delivered and as a result, the fur will be yellow.
This is recessive epistasis, as the homozygous recessive gene at the second locus will mask the expression of the gene at the first locus, regardless if the genotype is dominant (BB/Bb) or recessive (bb). Drawing a dihybrid cross between BbEe and BbEe gives us the following results (Table 2).
| BE | bE | Be | be |
BE | BBEE[Black] | BbEE[Black] | BBEe[Black] | BbEe[Black] |
bE | BbEE[Black] | bbEE[Brown] | BbEe[Black] | bbEe[Brown] |
Be | BBEe[Black] | BbEe[Black] | BBee[Yellow] | Bbee[Yellow] |
be | BbEe[Black] | bbEe[Brown] | Bbee[Yellow] | bbee[Yellow] |
Table 2. Shows a dihybrid cross between Labradors of genotype BbEe. Drawing a Punnett square, we get the results: (9/16) will have black fur, (3/16) will have brown fur and (4/16) will have yellow fur. StudySmarter Original
Recessive epistasis phenotypic ratio
The table above clearly shows that the phenotypic ratio for recessive epistasis is 9:3:3:1. The reason is the gene at the first locus will always be expressed as long as the gene at the second locus isn’t homozygous recessive (ee). In the case of a homozygous recessive gene expression, the pigment will not be deposited in the fur and the Labrador will have yellow fur.
Therefore, Table 2 shows that there would be 9 black, 3 brown, and 4 yellow Labradors. Recessive epistasis is why there are so many variations in the fur coat color of Labradors.
Epistasis - Key takeaways
- Epistasis is a polygenic interaction where one gene controls the expression of another gene at another locus.
- The gene that controls the expression of the other gene is epistatic, and the gene controlled is hypostatic to the other.
- Dominant epistasis is when a dominant allele controls the expression of another allele at a different locus.
- Recessive epistasis is when a pair of homozygous recessive alleles mask the expression of a gene at another locus.
- Phenotypic ratio for dominant epistasis is 12:3:1 and for recessive epistasis is 9:3:3:1.
References
- Subhadip Mondal, Top 6 Types of Epistasis Gene Interaction, 2016
- 12.3 laws of inheritance - biology for AP® courses, https://openstax.org/books/biology-ap-courses/pages/12-3-laws-of-inheritance?query=epistasis+⌖=%7B%22type%22%3A%22search%22%2C%22index%22%3A0%7D#fs-id1445150
- Recessive Allele - Definition and Examples, Biology Dictionary, April 29, 2017, https://biologydictionary.net/recessive-allele/
- Epistasis, Lumen, August 7, 2022, https://courses.lumenlearning.com/wm-biology1/chapter/reading-epistasis-2/
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel