Jump to a key chapter
Substance Exchange in plants
Plants also exchange substances with the environment, mainly taking part in gas exchange and mass flow of solutes.
Gas exchange in plants
Carbon dioxide is exchanged for oxygen in leaves to allow photosynthesis. The underside of leaves has microscopic pores called stomata (singular stoma) that are key in facilitating gas exchange.
The stomata are not permanent pores as they are regulated by specialised cells termed guard cells as per the diagram below. Apart from the gas exchange, water also diffuses out of the leaf via stomata. This is transpiration, an undesirable event in plant biology.
Plants also need oxygen for respiration. Hence plant parts adapt to maximising absorption of oxygen by diffusion - mainly via increasing the surfaces area through branching and air spaces in the plant body.
Mass flow
Knowing how plants absorb water from their roots and produce glucose via photosynthesis, you may question how these get transported to distant parts of plants such as flowers.
Plants have their own transport systems to fulfil this purpose. The transport system of plants, termed mass transport, is composed of two systems - the xylem and phloem. Both systems facilitate mass transport through a process called translocation.
The main difference between xylem and phloem is that xylem transports water, whereas phloem transports substances made by photosynthesis (assimilates).
Substance Exchange in animals
Transports systems in animals also have a pump-like organ (heart) and more complex vessels. These adaptations satisfy the greater metabolic demand in animals.
Role of capillaries in Substance Exchange
Animals have many blood vessels making up their transport systems. Substance exchange directly occurs in the capillaries.
Capillaries are adapted for efficient diffusion by being thin (only one cell thick) and forming a large network called capillary beds.
Substance exchange between blood and muscle
There is a very high metabolic rate in muscle cells because they generate a lot of energy for contraction. They require a lot of glucose and oxygen from the blood and release a lot of carbon dioxide. A rich network of capillaries surrounds muscle cells for that purpose.
Another key role of capillaries is facilitating gas exchange. We will explore the role of capillaries in gas exchange in the following examples.
Gas exchange in animals
Oxygen and carbon dioxide are the two substances exchanged during gas exchange.
Gas exchange occurs over a gas exchange surface. The gas exchange surfaces differ across animals with low oxygen demand (e.g., insects and fish) and animals with high oxygen demand (e.g., humans).
The gas exchange surfaces in fish are composed of structures called gills. Gills are divided into filaments that contain many lamellae.
Gas exchange occurs in the lamellae, which follow the counter-current system. This means that blood and water in the lamellae flow in opposite directions.
In insects that lack capillaries, gas exchange occurs in the trachea.
As organisms with high oxygen demand, humans have more complex gas exchange systems and protein pigments that transport oxygen (e.g. haemoglobin).
The human gas exchange system consists of multiple organs. Gas exchange takes place in specialised, grape-like structures in the lungs known as the alveoli.
The alveoli are adapted for gas exchange via their thin (i.e. one cell thick) walls and close proximity with capillaries.
Substance Exchange - Key takeaways
- Substance exchange occurs in all organisms. Substance exchange in plants is called mass flow systems, whereas animals have circulatory systems.
- The mass flow systems of plants comprise xylem and phloem. Xylem transports water and mineral ions from the roots to aerial plant parts, whereas phloem transports products from photosynthesis from the leaves to the rest of the plant.
- Capillaries are the main vessels involved in substance exchange in animals. Substance exchange occurs in the capillaries via diffusion. Capillaries also play a significant role in gas exchange, especially in fish and humans.
Learn faster with the 73 flashcards about Substance Exchange
Sign up for free to gain access to all our flashcards.
Frequently Asked Questions about Substance Exchange
How do single-celled organisms exchange substances?
As single-celled organisms have a high surface area to volume ratio, they simply rely on the cell membrane to exchange substances through processes such as diffusion, osmosis and active transport.
Discuss the exchange of substances between plasma and body cells.
Solutes such as glucose dissolve in the plasma after being absorbed by the small intestines. As the plasma has a higher glucose concentration than body cells, glucose diffuses into body cells via capillaries to be respired to generate energy (ATP).
How are capillaries adapted to allow the exchange of substances?
Capillaries are one cell thick to shorten the diffusion distance between the blood and neighbouring cells. They also form a network known as a capillary bed around neighbouring cells to increase the surface area needed for efficient diffusion.
How do multicellular organisms exchange substances?
As a result of their large sizes, the surface area to volume ratio of multicellular organisms is too small to enable diffusion alone for efficient substance exchange. Therefore, multicellular organisms have their own transport systems to achieve so. Plants have mass flow systems, whereas animals have circulatory systems.
How is the placenta adapted for the efficient exchange of substances?
The placenta is an organ that supplies nutrients to the fetus from the mother and removes metabolic wastes from the fetus into the mother’s blood. The placenta is surrounded by a rich network of maternal blood vessels. It comprises villi (finger-like projections similar to those of the small intestines) to increase the surface area and allow efficient substance exchange.
About StudySmarter
StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.
Learn more