Biological Carbon Sequestration

Mobile Features AB

Biological carbon sequestration is the storage of carbon dioxide in soils, the ocean, and vegetation (such as grasslands or forests). There are different biological processes of sequestering carbon on land and in the ocean.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
  • Fact Checked Content
  • Last Updated: 24.06.2022
  • 4 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Biological carbon sequestration: what is terrestrial sequestering?

    On land, carbon is sequestered by plants through photosynthesis. The carbon is then returned to the atmosphere through the respiration of consumers. Lets look at this in more detail below.

    • Terrestrial primary producers are land plants that are the first organisms in the food chain. They can make their own energy from sunlight and carbon dioxide through photosynthesis – a process in which green plants sequester carbon dioxide through chloroplasts in their leaves to produce energy.
    • Consumers are organisms that eat the other organisms below them in the food chain. Primary consumers are the first organisms to eat plants. These consumers return the carbon, which the primary producer sequestered, to the atmosphere through the process of respiration. Respiration is how living organisms release carbon dioxide into the atmosphere.
    • Decomposers consume dead organic matter and return the carbon to the atmosphere through respiration.
    • Photosynthesis: the process in which green plants sequester carbon dioxide through chloroplasts in their leaves to produce energy.
    • Respiration: the process by which living organisms release carbon dioxide into the atmosphere.

    Biological carbon sequestration: what is oceanic sequestering?

    The whole process of carbon entering and moving around the ocean is called the carbon pump. Phytoplankton sequester atmospheric carbon during photosynthesis in ocean waters. This carbon then transforms into terrestrial carbon or biological carbon before returning to the atmosphere.

    Sequestration by phytoplankton

    Phytoplankton sequester carbon dioxide from the atmosphere through the process of photosynthesis. As this happens, they build their shells from calcium carbonate. The carbon in the atmosphere is transformed into biological carbon. Other organisms, such as zooplankton, then consume these organisms. As these consumer organisms respire, some carbon is returned to the atmosphere.

    Can you remember what phytoplankton are? They are microscopic organisms that live in water.

    Carbonate shell sink

    When phytoplankton and other aquatic organisms die, they sink to the ocean floor. These organisms accumulate as sediment and eventually transform into sedimentary rock, which is decomposed by bacteria. This process returns carbon into the ocean in the form of dissolved organic carbon.

    Thermohaline circulation

    Thermohaline circulation is the global movement of water. Slight temperature changes can change the operation of both the thermohaline circulation and carbonate pump. Cold water sinks to the bottom of the ocean whilst warm water rises to the surface. Because warm Caribbean water passes the United Kingdom (UK) as it moves northward towards the poles, the UK is relatively warmer compared to other locations at the same latitude.

    Examples of landscapes that sequester biological carbon

    Here are two examples of landscapes that sequester biological carbon:

    Mangroves

    Mangroves found at tropical coastlines sequester 1.5 metric tonnes of carbon per hectare every year. Soils found in mangrove forests consist of layers of litter, humus, and peat, which contain over 10% carbon. These soils are submerged beneath the tidal water twice a day, making them anaerobic (without oxygen). Due to the lack of oxygen, the breakdown of biological material by biological decomposers takes a lot longer.

    Tundra soils

    Tundra regions of the world have permanently low temperatures, so ancient carbon is permanently frozen in the soil because no microbe activity decays the material. Tundra regions are massive carbon stores, holding carbon for hundreds of thousands of years.

    Biological Carbon Sequestration Mangrove forest in Australia StudySmarterExample of a mangrove, pixabay

    Biological Carbon Sequestration - Key takeaways

    • The biological process for sequestering carbon on land and in oceans differs.
    • Terrestrial sequestering is when terrestrial primary producers (plants) photosynthesise by taking in carbon dioxide, which is then returned to the atmosphere through the respiration of consumers.
    • Oceanic sequestering is when phytoplankton sequester atmospheric carbon during photosynthesis in ocean waters. This carbon then transforms into terrestrial carbon or biological carbon before returning to the atmosphere.
    • Temperature changes can influence thermohaline circulation. Thermohaline circulation refers to the global movement of water and affects the carbonate pump.
    • Different landscapes sequester carbon in different ways. For example, mangrove forests, which sequester 1.5 metric tonnes of carbon per hectare every year, and tundra soils, which have frozen carbon with no microbe activity to decay material.
    Learn faster with the 0 flashcards about Biological Carbon Sequestration

    Sign up for free to gain access to all our flashcards.

    Biological Carbon Sequestration
    Frequently Asked Questions about Biological Carbon Sequestration

    What are the benefits of carbon capture and storage?

    The benefits of carbon capture and storage include slowing down climate change (due to reduced CO2 emissions), generating power from stored CO2, and potential fuel creation from CO2.

    How does carbon sequestration work?

    Carbon sequestration works through the photosynthesis of plants, which capture the carbon to secure and store the carbon in soils and the ocean. 

    How does the biological carbon pump work?

    The whole process of carbon entering and moving around the ocean is called the carbon pump. Phytoplankton sequester atmospheric carbon during photosynthesis in ocean waters. This transforms into terrestrial carbon or biological carbon before returning to the atmosphere. During this process, the phytoplankton build their shells from calcium carbonate. These organisms are then consumed by other organisms, such as zooplankton. As these consumer organisms respire, some of the carbon is returned to the atmosphere. When phytoplankton and other aquatic organisms die, they sink to the ocean floor. These organisms accumulate as sediment and eventually transform into sedimentary rock. They are then decomposed by bacteria, which returns carbon into the ocean in the form of dissolved organic carbon.

    How does the biological pump affect the carbon cycle?

    The biological pump affects the carbon cycle because it sequesters carbon from the atmosphere. 

    What is carbon sequestration in trees?

    Carbon sequestration in trees is when the tree stores carbon as biomass through photosynthesis.

    Save Article
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Geography Teachers

    • 4 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email