Hydrostatic Pressure

Have you ever wondered why divers need to be careful when going deep underwater, or when resurfacing?  It is because the deeper you go, the higher the pressure the water exerts on the diver's body. To avoid the bends, divers stop at different depths to let the pressure of the water equalize with the pressure in their body.  Read on for an introduction to the basics of hydrostatic pressure.

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you submerged two flat plates, one a square and one a circle, to the same depth, and the diameter of the circle is the same as the length of the side of the square, which would have lower hydrostatic pressure?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following would increase the hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following would increase the hydrostatic pressure?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have a water column and you are measuring the hydrostatic force at three different heights: \(1\) meter, \(2\) meters, and \(3\) meters.  Which measurement will give the lowest hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose that both a professional football player and a small child went diving underwater to the same depth.  Which one would experience greater hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have a water column and you are measuring the hydrostatic force at three different heights: \(1\) meter, \(2\) meters, and \(3\) meters.  Which measurement will give the greatest hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

True or False: Hydrostatic force does not depend on hydrostatic pressure.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Hydrostatic ____ is a measurement involving a submerged area.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the techniques from calculus are used to help you find hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you go under water, you are experiencing ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you submerged two flat plates, one a square and one a circle, to the same depth, and the diameter of the circle is the same as the length of the side of the square, which would have higher hydrostatic pressure?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you submerged two flat plates, one a square and one a circle, to the same depth, and the diameter of the circle is the same as the length of the side of the square, which would have lower hydrostatic pressure?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following would increase the hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following would increase the hydrostatic pressure?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have a water column and you are measuring the hydrostatic force at three different heights: \(1\) meter, \(2\) meters, and \(3\) meters.  Which measurement will give the lowest hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose that both a professional football player and a small child went diving underwater to the same depth.  Which one would experience greater hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose you have a water column and you are measuring the hydrostatic force at three different heights: \(1\) meter, \(2\) meters, and \(3\) meters.  Which measurement will give the greatest hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

True or False: Hydrostatic force does not depend on hydrostatic pressure.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Hydrostatic ____ is a measurement involving a submerged area.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the techniques from calculus are used to help you find hydrostatic force?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

When you go under water, you are experiencing ____.

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

If you submerged two flat plates, one a square and one a circle, to the same depth, and the diameter of the circle is the same as the length of the side of the square, which would have higher hydrostatic pressure?

Show Answer

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Hydrostatic Pressure Teachers

  • 9 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Contents
Contents

Jump to a key chapter

    Hydrostatic Force and Pressure scuba diver pausing to equalize pressure StudySmarterFig. 1: Stay here and learn more to keep your brain from getting the metaphorical bends!

    Hydrostatic Pressure Definition

    So what is hydrostatic pressure?

    Hydrostatic pressure is the pressure exerted by a fluid at rest due to the force of gravity.

    Hydrostatic pressure varies depending on the fluid and the depth.

    Hydrostatic Pressure Formula

    You will need some variables going forward:

    • \(P\) is the hydrostatic pressure in \(\text{N}/\text{m}^2\);

    • \(\rho\) is the density of the fluid in \(\text{kg}/\text{m}^3\);

    • \(g\) is the acceleration due to gravity in \(\text{m}/\text{s}^2\); and

    • \(h\) is the height of the water column in \(\text{m}\).

    Then the formula for hydrostatic pressure is

    \[P = \rho gh.\]

    Notice that pressure increases as the height of the water column (also called the depth) increases. That fact is illustrated in the image below.

    Hydrostatic Force and Pressure pressure increases with depth StudySmarterFig. 2: The hydrostatic pressure, ranked from lowest to highest, would go \(A, B, C\).

    The density of water is \(1000\, \text{kg}/\text{m}^3\), and for gravity on Earth you can use \(9.81 \, \text{m}/\text{s}^2 \).

    Hydrostatic Force

    You are probably wondering what the difference between hydrostatic force and pressure is.

    Hydrostatic force is the force caused by the pressure of a fluid acting on a submerged surface.

    If you think about the example of the diver at the start of the article, the hydrostatic force on the diver is the force of the water on their submerged body. As you have seen, pressure increases as the height of the water column increases. In other words, the deeper the diver goes, the higher the pressure is, which in turn means the hydrostatic force acting on their body increases as well.

    Hydrostatic Force Formula

    The hydrostatic force formula is

    \[F = PA,\]

    where:

    • \(F\) is the hydrostatic force in \(\text{N}\);

    • \(P\) is they hydrostatic pressure in \(\text{N}/\text{m}^2\); and

    • \(A\) is the area of the submerged surface in \(\text{m}^2\).

    Notice that the formula works for very complicated surfaces, like that of a diver's body. However figuring out the exact hydrostatic force on a diver is a bit of a big problem to start with, so instead let's look at submerging a flat plate in a fluid instead.

    Hydrostatic Force and Pressure flat plate submerged d units under the surface StudySmarterFig. 3: A flat plate submerged \(d\) units under the water.

    In the picture above, there is a flat hexagonal plate submerged \(d\) units under the water. The rectangle shown has height \(\Delta y\) and width \(x_i\), so the area of the rectangle is \(x_i\Delta y\). That means the hydrostatic force on the rectangle is

    \[ \begin{align} F_{\text{rectangle}} &= PA \\ &= (\rho gh)(x_i\Delta y ) \\ &= (1000\cdot 9.81 d_i)(x_i\Delta y) \\ &= 9810d_ix_i\Delta y \, \text{N}. \end{align}\]

    An approximation of the hydrostatic force on the entire plate would be the sum of the hydrostatic forces on all of the rectangles, so if there are \(n\) rectangles,

    \[ F_{\text{plate}} \approx \sum\limits_{i=i}^n 9810d_ix_i\Delta y .\]

    This should look familiar to you since finding areas this way is one of the applications of integrals!

    Hydrostatic Forces on Submerged Surfaces

    Let's continue on with the plate example started in the previous section. The first step is to make a properly labeled diagram with the \(x\) and \(y\)-axis included. This plate is vertically symmetric, so it makes sense to center it on the \(y\)-axis with the bottom of the plate on the \(x\) axis.

    The top of the plate is \(6\) meters below the surface of the water. The plate can be thought of in two sections: the upper section where \(y \ge 2\); and the lower section where \(y \le 2\).

    Hydrostatic Force and Pressure A plate submerged 6 meters below the surface of the water StudySmarterFig. 4: The plate placed on the coordinate axis with the depth and equation of the upper line of the plate labeled.

    Then the total area of the plate is the sum of the upper section area and the lower section area. Therefore when integrating you can split the integral at \(y=2\) to make calculations easier. In fact, since the area is symmetric across the \(y\) axis, you can find the area of the right half of the plate and then multiply by \(2\) to get the total area of the plate.

    Upper Plate Calculations

    For the upper part of the plate, the depth below the surface is \(d_i\). The equation of the line describing the edge of the plate is \(y = -0.8x + 8\).

    The summation for the hydrostatic force on the upper part of the plate is

    \[ F_{\text{upper}} \approx \sum\limits_{i=i}^n 9810d_ix_i\Delta y ,\]

    which has a \(\Delta y\) in it. This means the integration will be done with respect to \(y\) and not with respect to \(x\). Therefore solving the equation of the line for \(x\) in terms of \(y\) gives

    \[x = -1.25y+10.\]

    You will need to be careful since writing it this way only gives you the right half of the plate! Since the plate is symmetric, to find the area from the left side of the plate to the right side of the plate, you can multiply the summation by \(2\). Substituting the line equation into the summation and multiplying by \(2\) gives

    \[ F_{\text{upper}} \approx 2\sum\limits_{i=i}^n 9810d_i(-1.25y_i+10)\Delta y .\]

    That just leaves writing \(d_i\) in terms of \(y_i\). As you can see from the picture above,

    \[y_i = 12-d_i,\]

    and now the summation becomes

    \[ F_{\text{upper}} \approx 2\sum\limits_{i=i}^n 9810(12-y_i)(-1.25y_i+10)\Delta y .\]

    Then the total force on the upper half of the plate is

    \[\begin{align} F_{\text{upper}} &= 2\lim\limits_{n\to \infty} \sum\limits_{i=1}^n 9810(12-y_i)(-1.25y_i+10) \Delta y \\ &= 2\int_2^6 9810(12-y)(-1.25y+10) \, \mathrm{d}y \\ &= \left. 2(9810)\left(\frac{5y^3-150y^2+1440y}{12}\right)\right|_{y=2}^{y=6} \\ &= 2(9810)\left(\frac{500}{3}\right) \\ &= 3270000 \, \text{N}.\end{align} \]

    Lower Plate Calculations

    Let's look at the lower plate. The diagram below shows the equation of the line for that part of the plate.

    Hydrostatic Force and Pressure lower half of the plate and equation of the line y=0.4x-1 StudySmarterFig. 5: Lower half of the submerged plate.

    The equation of the line is \(y=0.4x-1\). As in the calculations for the upper half of the plate, you need to write this equation in terms of \(x\) so it can be substituted in. Rewriting the equation of the line in terms of \(x\) you get \(x = 2.5y+2.5\). Since \(d_i = 12-y_i\), the hydrostatic force on a horizontal rectangular strip running from the \(y\)-axis to the line is

    \[ \begin{align} F_i &= P_iA_i \\ &= 9810d_i(2.5y_i+2.5)\Delta y \\ &= 9810(12-y_i)(2.5y_i+2.5 ) \Delta y. \end{align}\]

    The total force on the upper half of the plate is then

    \[\begin{align} F_{\text{lower}} &= 2\lim\limits_{n\to \infty} \sum\limits_{i=1}^n 9810(12-y_i)(2.5y_i+2.5 ) \Delta y \\ &= 2(2.5)(9810)\int_0^2 (12-y)(y+1 ) \, \mathrm{d}y \\ &= \left. (49050)\frac{-2y^3+33y^2+72y}{6}\right|_{y=0}^{y=2} \\ &=(49050)\left(\frac{130}{3}\right) \\ &= 2125500\, \text{N}.\end{align} \]

    As you would expect, the hydrostatic force on the lower part of the plate is smaller than that on the upper part of the plate because the area on the lower plate is smaller than the area on the upper part of the plate.

    Total Hydrostatic Force on the Plate

    Then to get the total hydrostatic force on the plate, you just need to add the hydrostatic force on the upper part of the plate to the hydrostatic force on the lower part of the plate:

    \[ \begin{align} F_{\text{total}} &= F_{\text{upper}} + F_{\text{lower}} \\ &= 3270000 + 2125500 \\ &= 5395500 \, \text{N}.\end{align} \]

    As you would expect, the hydrostatic force on the lower part of the plate is smaller than that on the upper part of the plate because the area on the lower plate is smaller than the area on the upper part of the plate.

    Hydrostatic Pressure - Key takeaways

    • Hydrostatic pressure is the pressure exerted by a fluid at rest due to the force of gravity.
    • Then the formula for hydrostatic pressure is

      \[P = \rho gh.\]where:

      • \(P\) is the hydrostatic pressure in \(\text{N}/\text{m}^2\);

      • \(\rho\) is the density of the fluid in \(\text{kg}/\text{m}^3\);

      • \(g\) is the acceleration due to gravity in \(\text{m}/\text{s}^2\); and

      • \(h\) is the height of the water column in \(\text{m}\).

    • Hydrostatic force is the force caused by the pressure of a fluid acting on a submerged surface.

    • The hydrostatic force formula is

      \[F = PA,\]

      where:

      • \(F\) is the hydrostatic force in \(\text{N}\);

      • \(P\) is they hydrostatic pressure in \(\text{N}/\text{m}^2\); and

      • \(A\) is the area of the submerged surface in \(\text{m}^2\).

    Frequently Asked Questions about Hydrostatic Pressure

    What is hydrostatic pressure? 

    Hydrostatic pressure is the pressure exerted by a column of fluid.

    What generates the force that results in hydrostatic pressure? 

    Gravity.

    How to calculate hydrostatic pressure? 

    It depends on the depth in the fluid the object is submerged and the shape of the object. But for any point in a water column, to calculate the pressure we use:


    P=ρgh


    Here h is the depth, g is the gravity and is the density ρ of the fluid.

    What is the basic function of hydrostatic pressure? 

    P=ρgd, where P is pressure, ρ is the density of the fluid, g is gravitational acceleration, and d or h is the depth below the surface.

    What is the hydrostatic forces? 

    The hydrostatic force that acts on an area is F=PA, where F is force, P is hydrostatic pressure, and A is the area of the object.

    How to measure hydrostatic pressure? 

    Usually with a gauge submerged in the fluid which returns the force per unit area.

    Save Article

    Test your knowledge with multiple choice flashcards

    If you submerged two flat plates, one a square and one a circle, to the same depth, and the diameter of the circle is the same as the length of the side of the square, which would have lower hydrostatic pressure?

    Which of the following would increase the hydrostatic force?

    Which of the following would increase the hydrostatic pressure?

    Next

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Math Teachers

    • 9 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email