Angular Acceleration

Mobile Features AB

Picture this - you're lucky enough to have seats right in front of the finish line at an F1 race! As the cars race down the straight towards you, you keep them in the centre of your vision. While they are far away down the straight, you only have to turn your head slowly to keep the cars central. However as the cars get closer, you have to turn faster and faster to keep your eyes on them! You've just had to accelerate the rotation of your head, and this can be described as angular acceleration. This article defines angular acceleration, its formula and its units, and it introduces some example calculations and relates angular and linear acceleration in more detail.

Get started

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
  • Fact Checked Content
  • Last Updated: 09.03.2023
  • 8 min reading time
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Save Article Save Article

Jump to a key chapter

    Angular acceleration definition

    We use linear acceleration to describe a change in linear velocity, but how do we describe a change in the rate of rotation of a spinning object? As the rate of rotation is the angular velocity, it may not surprise you that angular accelerationis the rotational equivalent of linear acceleration. While linear acceleration describes the rate of change of linear velocity, angular acceleration is the rate of change of angular velocity \(\omega\).

    Angular Acceleration Circular Motion Angular Acceleration StudySmarter

    Diagram showing how the key quantities in circular motion vary as an object rotates with an angular acceleration of 0.6 rad/s for 1 second, StudySmarter Originals.

    Similarly to angular velocity, convention states that angular acceleration which results in an increase in the rate of counter-clockwise rotation is positive, while an increase in the rate of clockwise rotation is caused by negative angular acceleration.

    Angular acceleration is a pseudoscalar unit. This means that it behaves like a scalar unit as it only requires a magnitude to be fully defined, but it changes sign depending on the direction from which you are looking: a ceiling fan might go anticlockwise from below, but if you look at it from above it would go clockwise! Depending on the frame of reference, positive angular acceleration can always increase the rate of rotation in either direction. To define which direction acceleration is acting in, we choose a frame of reference, and then convention states that a positive sign indicates angular acceleration acting to increase the rate of clockwise rotation and a negative sign indicates an increase in the counter-clockwise rate of rotation.

    Angular acceleration units

    The SI unit for angular velocity is radians-per-second, defining the angle an object rotates through every second. Angular acceleration defines the amount that the angular velocity changes each second, so its units are the unit for angular velocity per second: (radians-per-second)-per second. Radians-per-second-per-second is equivalent to radians-per-second-squared, as shown below:

    \[\alpha=\dfrac{\left(\dfrac{\text{radians}}{\text{second}}\right)}{\text{second}}=\dfrac{\text{radians}}{\text{seconds}^2}\]

    When studying circular motion, the standard unit for dealing with angles is the radian. A full \(360^\circ\) rotation contains \(2\pi\) radians, meaning:

    \(360^\circ=2\pi \,\text{radians}\), so \(1\,\text{radian}=\dfrac{360^\circ}{2\pi}=57.3^\circ\).

    To convert an angle \(\theta_{\text{degrees}}\) into radians, this can be found as \(\theta_{\text{radians}}=\dfrac{\theta_{\text{degrees}}}{360^\circ}\times 2\pi\).

    Similarly, to convert from radians to degrees, we can use \(\theta_{\text{degrees}}=\dfrac{\theta_{\text{radians}}}{2\pi}\times 360^\circ\).

    Angular acceleration formula

    To find the angular acceleration of an object, we need to know its angular velocity at two points in time. We can then calculate the amount that the angular velocity changed each second, assuming a constant rate of angular acceleration between the two points. This gives us the angular acceleration \(\alpha\):

    \[\alpha=\dfrac{\Delta\omega}{\Delta t}=\dfrac{\omega_f-\omega_i}{t_f-t_i}\]

    where the subscript '\(f\)' means 'final' and '\(i\)' means 'initial'.

    Example angular acceleration calculation

    The diagram below shows a flywheel which is initially stationary, is accelerated for 5 seconds and then left to spin freely for 10 seconds, undergoing some friction. The angular velocity is measured at each of these points and indicated in the diagram.

    Angular Acceleration Flywheel Example StudySmarter

    Example - A flywheel is accelerated for 5 seconds until it has an angular rotation of 10 rad/s. It then spins for 10 seconds, after which its angular velocity has decreased to 9 rad/s, StudySmarter Originals.
    1. Determine the angular acceleration while the flywheel is accelerated and while it spins freely.
    2. Plot the angular velocity and acceleration against time.

    To find the angular acceleration in each period, we can use the formula for angular acceleration as we know the initial and final angular velocities. We call the angular acceleration undergone in the first 5 seconds \(\alpha_1\) and that in the next 10 seconds \(\alpha_2\) and calculate:

    \[\alpha_1=\dfrac{10\,\mathrm{rad/s}-0\,\mathrm{rad/s}}{5\,\mathrm{s}-0\,\mathrm{s}}=2\,\mathrm{rad/s}^2\]

    \[\alpha_2=\dfrac{9\,\mathrm{rad/s}-10\,\mathrm{rad/s}}{15\,\mathrm{s}-5\,\mathrm{s}}=-0.1\,\mathrm{rad/s}^2\]

    To plot the velocity and acceleration against time, we plot the values at each of our known time points (\(0\, \mathrm{s}\), \(5\,\mathrm{s}\) and \(15\,\mathrm{s}\)) and connect them with straight lines because the angular accelerations are constant in each period.

    Angular Acceleration Flywheel Example Plot StudySmarterA plot of the angular velocity (yellow) and the angular acceleration (blue) of the flywheel from 0 to 15 seconds, StudySmarter Originals.

    Relating angular acceleration to linear acceleration

    In circular motion, the angular displacement \(\theta\) is the equivalent of the displacement \(s\) in the study of linear motion. The kinematic equations for velocity, acceleration and displacement have angular equivalents as well.

    QuantityLinear equationAngular equation
    Velocity\(v=\dfrac{\Delta x}{\Delta t}\)\(\omega =\dfrac{\Delta \theta}{\Delta t}\)
    Acceleration\(a=\dfrac{\Delta v}{\Delta t}\)\(\alpha=\dfrac{\Delta \omega}{\Delta t}\)
    Displacement\(s=v_i(t_f-t_i)+\frac{1}{2}a(t_f-t_i)^2\)\(\theta=\omega_i(t_f-t_i)+\frac{1}{2}\alpha(t_f-t_i)^2\)
    \(v_f^2-v_i^2=2as\)\(\omega_f^2-\omega_i^2=2\alpha\theta\)

    A fan is stationary at an angular displacement of 90 degrees (\(\frac{\pi}{2}\,\mathrm{rad}\)). When the fan is switched on at \(t=0\,\mathrm{s}\), it begins to rotate with an angular acceleration of \(2\pi\,\mathrm{rad/s}^2\). Find the angular velocity and angular displacement of the fan at \(t=3\,\mathrm{s}\).

    To find the angular velocity of the fan, we can rearrange the angular kinematic equation for acceleration:

    \[\alpha=\dfrac{\omega_f-\omega_i}{t_f-t_i}\]

    so

    \[\omega_f=\alpha(t_f-t_i)+\omega_i\]

    Therefore, the angular velocity \(\omega_f\) of the fan after accelerating is

    \[\omega_f=2\pi\,\mathrm{\tfrac{rad}{s^2}}\times (3\,\mathrm{s}-0\,\mathrm{s})+0\,\mathrm{\tfrac{rad}{s}}=6\pi,\mathrm{\tfrac{rad}{s}}\]

    To find the angular displacement of the fan after accelerating for 3 seconds, we can use the equation for displacement:

    \[\begin{align}\theta &=\omega_i(t_f-t_i)+\frac{1}{2}\alpha(t_f-t_i)^2=\\&=0\,\mathrm{\tfrac{rad}{s}}\times (3\,\mathrm{s}-0\,\mathrm{s})+\frac{1}{2}\times 2\pi\,\mathrm{\tfrac{rad}{s^2}}\times (3\,\mathrm{s}-0\,\mathrm{s})^2=\\&=9\pi\,\mathrm{rad}\end{align}\]

    This gives us the amount of displacement that occurred over the time period, so to find the current displacement we need to add the initial angular displacement of \(\frac{\pi}{2}\,\mathrm{rad}\). Therefore, the angular displacement of the fan at 3 seconds is \(9.5\pi\,\mathrm{rad}\). However, as there are only \(2\pi\,\mathrm{rad}\) in a full rotation, this displacement can be simplified to \(1.5\,\mathrm{rad}\), equivalent to an angle of \(270^\circ\).

    Angular Acceleration - Key takeaways

    • Angular acceleration α is the rotational equivalent of linear acceleration. While linear acceleration describes the rate of change of linear velocity, angular acceleration is the rate of change of angular velocity \(\omega\).
    • Angular acceleration is defined in SI units of radians-per-second squared (\(\mathrm{rad/s^2}\)).
    • To find an object's angular acceleration, we divide the change in angular velocity by the change in time. This gives an average change in angular velocity per second, which is the angular acceleration.
    • Convention states that a positive angular acceleration increases the counter-clockwise rate of rotation, while negative angular acceleration acts to increase clockwise rotation.
    • When studying circular motion, the standard unit for dealing with angles is the radian. A full \(360^\circ\) rotation contains \(2\pi\) radians, meaning one radian equals \(57.3\) degrees.
    Frequently Asked Questions about Angular Acceleration

    How to find angular acceleration?

    The angular acceleration is the rate of change of angular velocity. To find the average angular acceleration between two points in time (t1 & t2), we need to know the angular velocity at those two points (ω1 & ω2). We can then use the equation below to find the average angular acceleration:


    angular acceleration α = (ω- ω1) / (t- t1

    How to find angular acceleration from angular velocity?

    As angular acceleration defines the rate that the angular velocity is increasing or decreasing at, we need to know the angular velocity (ω1 & ω2) at two points in time (t1 & t2) . The average angular acceleration between these times can then be found using the below equation:


    angular acceleration α = (ω- ω1) / (t- t1

    What is angular acceleration?

    Angular acceleration α is the rotational equivalent of linear acceleration. While linear acceleration describes the rate of change of linear velocity, angular acceleration is the rate of change of angular velocity ω. It is defined in SI units of radians-per-second squared.

    How to find angular acceleration from moment of inertia?

    An object’s moment of inertia I defines how resistant it is to angular acceleration around a specific axis. To accelerate an object's rotation, it's necessary to apply an external torque τ (a twisting force). The relationship between an object’s moment of inertia, the applied torque and resulting angular acceleration α is given by the equation below:


    α =τ /I 

    Is angular acceleration the derivative of angular velocity?

    The angular acceleration defines the rate of change of angular velocity, meaning it is the time derivative of an object’s angular velocity. The equation to find angular acceleration between two points is shown below:


    Angular acceleration α = (ω- ω1) / (t- t1


    This can also be written in derivative form as:


    angular acceleration α=dω/dt

    Save Article

    Test your knowledge with multiple choice flashcards

    What is the SI unit for angular acceleration?

    Linear acceleration represents the rate of change of linear velocity. What does angular acceleration represent?

    If a stationary object undergoes an angular acceleration of \(5\,\mathrm{\tfrac{rad}{s^2}}\), which direction will it start rotating?

    Next
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Physics Teachers

    • 8 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email