Earthquake Shock Waves

Earthquakes are crazy natural disasters that we've all heard about, but maybe never experienced. Either way, we know what happens, the earth shakes rapidly and causes damage to buildings and property in the area. But did you know that the shaking that we experience during an earthquake is actually a shock wave? You may have heard of shock waves as well, examples include when a whip is whipped, or a jet travels very quickly in the sky. These are all shock waves, but shock waves that occur during an earthquake are quite different. What do shock waves have to do with earthquakes and how do earthquake shock waves work? Let's find out.

Get started

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

StudySmarter Editorial Team

Team Earthquake Shock Waves Teachers

  • 9 minutes reading time
  • Checked by StudySmarter Editorial Team
Save Article Save Article
Contents
Contents

Jump to a key chapter

    Earthquake shock waves definition

    Before we get into the specifics of shock waves that occur during earthquakes, let's first make sure we know exactly what an earthquake is and what we mean by mean by shock waves in the context of earthquakes.

    An earthquake is a sudden release of built-up strain energy from the Earth's crust.

    When an earthquake occurs, energy is released and it spreads out in all directions, moving away from the source like ripples on a pond. These perturbances that propagate through the Earth's layers are known as shock waves or seismic waves.

    Shock waves or seismic waves are a form of energy propagation that result from earthquakes and travels through Earth's layers.

    Specifically, this compression needs to occur at a high speed, the speed of sound. The speed of sound is 343 metres per second (\(\mathrm{m/s}\)), and if an object is to travel through a medium at this speed, a shock wave will occur.

    When a shock wave occurs, the point at which it originates undergoes intense physical changes in the blink of an eye. The temperature in this region increases massively for a small time, as well as the density of the material, as the Pressure has pushed much of the medium into this single point for a short time.

    Earthquake Shock Waves A graphic showing an example earthquake StudySmarter

    Fig. 1: This is how an earthquake looks underground. Two tectonic plates shift, causing the shock waves described above. The centre point we see here is known as the epicentre of the earthquake.

    So now we have an idea of what shock waves are in general,

    we can go into more detail in regards to Earthquake shock waves. When it comes to earthquakes, we typically don't call them shock waves, we call them seismic waves. These seismic waves are called shock waves the same as we have described just now, however they aren't shock waves in the same sense.

    Seismic waves are caused by the sudden release of pressure caused by the Friction between tectonic plates deep underground. The sudden release of this pressure results in waves of energy heading up towards the surface. There are multiple different kinds of seismic waves when an earthquake occurs, with different properties and times that they occur for each, but we'll get to that later. These shock waves are what we feel and experience when an earthquake happens where we live, the violent shaking of the ground is the result of a shock wave passing through it!

    Earthquake Shock Waves Tectonic plate boundaries StudySmarter

    Fig. 2: This is a map showing the lines at which earthquakes are more likely to occur on earth, known as “fault lines”.

    The first earthquake ever recorded occurred in China in the year 1,177 B.C. That's over 3,000 years ago!

    Types of shock waves earthquakes

    As we've previously discussed, earthquakes generate more than one kind of shock wave. There are four different types of shock waves, all with different properties.

    P-waves

    P-waves are the first of the shock waves to occur after the earthquake, and one of the two main shock waves to occur overall. This wave is also known as a compressional wave, and it is also longitudinal. This means that the wave creates areas of compression and dilation that travel along the surface of the earth, disrupting anything on this ground as it travels across it. As this is the first type of shock wave to occur in an earthquake, it is the first detectable shock wave by technology.

    A GIF of a P-wave as it moves through the ground.Fig. 3: A P-wave in action. Compressions and rare factions can be seen.

    S-waves

    S-waves are the second type of shock wave to occur after the earthquake, and also the second of the two main shock waves that occur overall. These are different to P-waves in that they are transverse waves instead of longitudinal waves. This means these are the waves that propagate perpendicular to the direction of oscillation, therefore the oscillation is perpendicular to a P-wave. Because these waves are transverse, S-waves cannot travel through liquid, this includes magma and molten rock underneath the Earth's surface. These shock waves can also be called shear waves.

    A GIF of an S-wave as it moves through the ground.Fig. 4: An S-wave in action.

    Rayleigh-waves

    Rayleigh-waves might be a type of shock wave to occur in an earthquake that you haven't heard of before. Rayleigh-waves travel across the Earth's surface in an elliptical pattern. As a result of this, Rayleigh-waves have a horizontal and a vertical component to their shock waves.

    A GIF of a Rayleigh-wave as it moves through the ground.Fig. 5: A Raleigh-wave in action.

    Love-waves

    Love-waves are also a type of shock wave to occur in an earthquake that you may not be familiar with. Love waves are also a surface wave, meaning they travel along the surface of the Earth. This makes them quite similar to Rayleigh-waves, however, the key difference is that Love Waves travel as a transverse wave as opposed to the more elliptical motion of the Rayleigh-waves.

    A GIF of a Love-wave as it moves through the ground.Fig. 6: A Love-wave in action.

    Earthquake shock waves speed

    As we know, earthquakes generate more than one kind of shock wave. As a result, these different kinds of shock waves all move at different speeds.

    P-Waves have a range of velocities, from \(629\,\,\mathrm{m}/s\) to \(2599\,\,\mathrm{m/s}\). S-waves are slower than P-waves, ranging from about \(288\,\,\mathrm{m/s}\) to \(1200\,\,\mathrm{m/s}\). We can think of Rayleigh-waves as like waves in the water, making them travel at a few kilometres a second. Similarly, Love-waves will travel between \(2-6\,\,\mathrm{km}{s}\).

    The most powerful shock waves from an earthquake

    Before we're able to cover the most powerful shock waves, and therefore the most powerful and destructive earthquakes to have ever occurred, we first need to learn about how the power of earthquakes is measured. The technology we use to record the intensity of earthquakes are called seismographs.

    A seismograph consists of an internal mass on a spring, known as the seismometer. The device is firmly attached to the ground so that when the earth begins to shake, the device will shake along with it. The only part of the device that wouldn't shake with it is the seismometer, due to inertia it would stay in place. The device will then record the motion of itself relative to the motion of the seismometer, and since this motion is the same as the motion on the ground, the motion of the earth is recorded.

    A seismometer inside of a seismograph.Fig. 7: A seismometer inside a seismograph. Look at how the whole thing is bolted down for it to work properly!

    This is how seismographs typically used to work, but modern high-tech seismographs will measure the electronic changes in the system caused by the movement of an earthquake, and compare this with the mass of the system to subsequently record the data.

    Earthquake Shock Waves A graph of an earthquake's magnitude StudySmarterFig. 8: An example of how an earthquake looks on the Richter scale.

    So now that we know how earthquakes are measured, what units do we measure them with? Earthquake shock waves are measured using the Richter scale, a scale used to measure the size (also known as magnitude) of an earthquake, therefore how powerful the shock wave of an earthquake is. The measurement of an earthquakes shock waves is determined using the amplitude of the largest shock wave the seismograph registers. The amplitude of a wave is the height that it reaches, the higher the height meaning the more powerful the wave.

    Now that we know how earthquake shock waves are measured, and what scale they are measured on, let's look at the most powerful recorded earthquake in history. The most powerful earthquake to ever occur happened near Valdivia in Chile, in 1960. This earthquake registered on the Richter scale as a 9.5 magnitude, also causing an enormous tsunami to occur that travelled at nearly 200 miles per hour.

    Earthquake Shock Waves - Key takeaways

    • Earthquake shock waves, or seismic waves, are caused from earthquakes and are the shaking that earthquakes are known for.
    • There are four types of earthquake shock waves: P-waves, S-waves, Rayleigh-waves and Love-waves.
    • Each kind of earthquake shock wave has different properties and speeds, as well as different points in an earthquake that they occur.
    • Earthquakes are measured using seismographs, and scaled using the Richter scale.

    References

    1. Fig. 3- P-wave (https://topex.ucsd.edu/es10/es10.1997/lectures/lecture20/secs.with.pics/node3.html) by UPSeis Program (http://www.geo.mtu.edu/UPSeis/)
    2. Fig. 4- S-wave (https://topex.ucsd.edu/es10/es10.1997/lectures/lecture20/secs.with.pics/node3.html) by UPSeis Program (http://www.geo.mtu.edu/UPSeis/)
    3. Fig. 5- Raleigh-wave (https://topex.ucsd.edu/es10/es10.1997/lectures/lecture20/secs.with.pics/node3.html) by UPSeis Program (http://www.geo.mtu.edu/UPSeis/)
    4. Fig. 6- Love-wave (https://topex.ucsd.edu/es10/es10.1997/lectures/lecture20/secs.with.pics/node3.html) by UPSeis Program (http://www.geo.mtu.edu/UPSeis/)
    5. Fig. 7- Seisometer (https://commons.wikimedia.org/wiki/File:Benioff_Seismometer-2.jpg) by Togabi (https://commons.wikimedia.org/wiki/User:Togabi) is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en).
    Frequently Asked Questions about Earthquake Shock Waves

    What are the 4 types of earthquake waves? 

    The 4 types of earthquake waves are P-waves, S-waves, Rayleigh-waves, and Love-waves.

    Are seismic waves shock waves? 

    Seismic waves are the shock waves that cause earthquakes.

    What are the fastest moving shock waves of an earthquake? 

    The fastest moving shock waves of an earthquake are P-waves.

    What waves cause earthquakes? 

    The two waves that cause earthquakes are known as body waves and surface waves.

    Which waves cause most damage in an earthquake? 

    The waves that cause the most damage in an earthquake are called S-waves.

    Save Article

    Discover learning materials with the free StudySmarter app

    Sign up for free
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team Physics Teachers

    • 9 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App
    Sign up with Email